Control of Phagocytosis by Microbial Pathogens

نویسندگان

  • Eileen Uribe-Querol
  • Carlos Rosales
چکیده

Phagocytosis is a fundamental process of cells to capture and ingest foreign particles. Small unicellular organisms such as free-living amoeba use this process to acquire food. In pluricellular organisms, phagocytosis is a universal phenomenon that all cells are able to perform (including epithelial, endothelial, fibroblasts, etc.), but some specialized cells (such as neutrophils and macrophages) perform this very efficiently and were therefore named professional phagocytes by Rabinovitch. Cells use phagocytosis to capture and clear all particles larger than 0.5 µm, including pathogenic microorganisms and cellular debris. Phagocytosis involves a series of steps from recognition of the target particle, ingestion of it in a phagosome (phagocytic vacuole), maturation of this phagosome into a phagolysosome, to the final destruction of the ingested particle in the robust antimicrobial environment of the phagolysosome. For the most part, phagocytosis is an efficient process that eliminates invading pathogens and helps maintaining homeostasis. However, several pathogens have also evolved different strategies to prevent phagocytosis from proceeding in a normal way. These pathogens have a clear advantage to perpetuate the infection and continue their replication. Here, we present an overview of the phagocytic process with emphasis on the antimicrobial elements professional phagocytes use. We also summarize the current knowledge on the microbial strategies different pathogens use to prevent phagocytosis either at the level of ingestion, phagosome formation, and maturation, and even complete escape from phagosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C-type lectins and phagocytosis

To recognise and respond to pathogens, germ-line encoded pattern recognition receptors (PRRs) bind to conserved microbial structures and activate host defence systems, including microbial uptake by phagocytosis. Phagocytosis is a complex process that is instrumental in the control of extracellular pathogens, and this activity is mediated by several PRRs, including a number of C-type lectins. Wh...

متن کامل

Signaling events during phagocytosis

Phagocytosis is an evolutionarily conserved process utilized by many cells to ingest microbial pathogens, and apoptotic and necrotic corpses. Recent investigation has revealed a fundamental requirement for two co-ordinated cellular processes — cytoskeletal alterations and membrane trafficking — in the phagocytic event. Some elements of this machinery are co-opted by certain pathogens to gain en...

متن کامل

Regulation of neutrophil-mediated killing of Staphylococcus aureus and chemotaxis by c-jun NH2 terminal kinase.

The role of JNK in neutrophil chemotaxis and killing of microbial pathogens remains unclear. Using a recently described cell-permeable peptide inhibitor of the JNK pathway, based on the JBD of JIP-1, coupled to the protein transduction domain of HIV-TAT (TAT-JIP), in association with control peptides, we demonstrate that the JNK pathway plays a major role in regulating human neutrophil chemotax...

متن کامل

HlSRB, a Class B Scavenger Receptor, Is Key to the Granulocyte-Mediated Microbial Phagocytosis in Ticks

Ixodid ticks transmit various pathogens of deadly diseases to humans and animals. However, the specific molecule that functions in the recognition and control of pathogens inside ticks is not yet to be identified. Class B scavenger receptor CD36 (SRB) participates in internalization of apoptotic cells, certain bacterial and fungal pathogens, and modified low-density lipoproteins. Recently, we h...

متن کامل

Phagocytosis of Bacteria Adhering to a Biomaterial Surface in a Surface Thermodynamic Perspective

Bacterial biofilms can increase the pathogenicity of infection and constitute a major problem in modern health-care, especially on biomaterial implants and devices. Biofilms are difficult to eradicate by the host immune system, even with antibiotics, and have been the number one cause of biomaterial implant and device failure for decades. Therefore, it is important to understand how immune cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017